3.1227 \(\int \frac{(a+b x+c x^2)^{5/2}}{(b d+2 c d x)^6} \, dx\)

Optimal. Leaf size=139 \[ -\frac{\left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^6 (b+2 c x)^3}-\frac{\sqrt{a+b x+c x^2}}{32 c^3 d^6 (b+2 c x)}+\frac{\tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{64 c^{7/2} d^6}-\frac{\left (a+b x+c x^2\right )^{5/2}}{10 c d^6 (b+2 c x)^5} \]

[Out]

-Sqrt[a + b*x + c*x^2]/(32*c^3*d^6*(b + 2*c*x)) - (a + b*x + c*x^2)^(3/2)/(24*c^2*d^6*(b + 2*c*x)^3) - (a + b*
x + c*x^2)^(5/2)/(10*c*d^6*(b + 2*c*x)^5) + ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])]/(64*c^(7/2)
*d^6)

________________________________________________________________________________________

Rubi [A]  time = 0.0745528, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.115, Rules used = {684, 621, 206} \[ -\frac{\left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^6 (b+2 c x)^3}-\frac{\sqrt{a+b x+c x^2}}{32 c^3 d^6 (b+2 c x)}+\frac{\tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{64 c^{7/2} d^6}-\frac{\left (a+b x+c x^2\right )^{5/2}}{10 c d^6 (b+2 c x)^5} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)^(5/2)/(b*d + 2*c*d*x)^6,x]

[Out]

-Sqrt[a + b*x + c*x^2]/(32*c^3*d^6*(b + 2*c*x)) - (a + b*x + c*x^2)^(3/2)/(24*c^2*d^6*(b + 2*c*x)^3) - (a + b*
x + c*x^2)^(5/2)/(10*c*d^6*(b + 2*c*x)^5) + ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])]/(64*c^(7/2)
*d^6)

Rule 684

Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 1)), x] - Dist[(b*p)/(d*e*(m + 1)), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1
), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] &&
 GtQ[p, 0] && LtQ[m, -1] &&  !(IntegerQ[m/2] && LtQ[m + 2*p + 3, 0]) && IntegerQ[2*p]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (a+b x+c x^2\right )^{5/2}}{(b d+2 c d x)^6} \, dx &=-\frac{\left (a+b x+c x^2\right )^{5/2}}{10 c d^6 (b+2 c x)^5}+\frac{\int \frac{\left (a+b x+c x^2\right )^{3/2}}{(b d+2 c d x)^4} \, dx}{4 c d^2}\\ &=-\frac{\left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^6 (b+2 c x)^3}-\frac{\left (a+b x+c x^2\right )^{5/2}}{10 c d^6 (b+2 c x)^5}+\frac{\int \frac{\sqrt{a+b x+c x^2}}{(b d+2 c d x)^2} \, dx}{16 c^2 d^4}\\ &=-\frac{\sqrt{a+b x+c x^2}}{32 c^3 d^6 (b+2 c x)}-\frac{\left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^6 (b+2 c x)^3}-\frac{\left (a+b x+c x^2\right )^{5/2}}{10 c d^6 (b+2 c x)^5}+\frac{\int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{64 c^3 d^6}\\ &=-\frac{\sqrt{a+b x+c x^2}}{32 c^3 d^6 (b+2 c x)}-\frac{\left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^6 (b+2 c x)^3}-\frac{\left (a+b x+c x^2\right )^{5/2}}{10 c d^6 (b+2 c x)^5}+\frac{\operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{32 c^3 d^6}\\ &=-\frac{\sqrt{a+b x+c x^2}}{32 c^3 d^6 (b+2 c x)}-\frac{\left (a+b x+c x^2\right )^{3/2}}{24 c^2 d^6 (b+2 c x)^3}-\frac{\left (a+b x+c x^2\right )^{5/2}}{10 c d^6 (b+2 c x)^5}+\frac{\tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{64 c^{7/2} d^6}\\ \end{align*}

Mathematica [C]  time = 0.0507466, size = 97, normalized size = 0.7 \[ -\frac{\left (b^2-4 a c\right )^2 \sqrt{a+x (b+c x)} \, _2F_1\left (-\frac{5}{2},-\frac{5}{2};-\frac{3}{2};\frac{(b+2 c x)^2}{b^2-4 a c}\right )}{320 c^3 d^6 (b+2 c x)^5 \sqrt{\frac{c (a+x (b+c x))}{4 a c-b^2}}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2)^(5/2)/(b*d + 2*c*d*x)^6,x]

[Out]

-((b^2 - 4*a*c)^2*Sqrt[a + x*(b + c*x)]*Hypergeometric2F1[-5/2, -5/2, -3/2, (b + 2*c*x)^2/(b^2 - 4*a*c)])/(320
*c^3*d^6*(b + 2*c*x)^5*Sqrt[(c*(a + x*(b + c*x)))/(-b^2 + 4*a*c)])

________________________________________________________________________________________

Maple [B]  time = 0.204, size = 1080, normalized size = 7.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^6,x)

[Out]

-1/80/d^6/c^5/(4*a*c-b^2)/(x+1/2*b/c)^5*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(7/2)-1/30/d^6/c^3/(4*a*c-b^2)^2/(
x+1/2*b/c)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(7/2)-8/15/d^6/c/(4*a*c-b^2)^3/(x+1/2*b/c)*((x+1/2*b/c)^2*c+1
/4*(4*a*c-b^2)/c)^(7/2)+8/15/d^6/(4*a*c-b^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(5/2)*x+4/15/d^6/c/(4*a*c-b
^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(5/2)*b+2/3/d^6/(4*a*c-b^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(3
/2)*x*a-1/6/d^6/c/(4*a*c-b^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(3/2)*x*b^2+1/3/d^6/c/(4*a*c-b^2)^3*((x+1/
2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(3/2)*b*a-1/12/d^6/c^2/(4*a*c-b^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(3/2)*b
^3+1/d^6/(4*a*c-b^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2)*x*a^2-1/2/d^6/c/(4*a*c-b^2)^3*((x+1/2*b/c)^2*
c+1/4*(4*a*c-b^2)/c)^(1/2)*x*a*b^2+1/16/d^6/c^2/(4*a*c-b^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2)*x*b^4+
1/2/d^6/c/(4*a*c-b^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2)*b*a^2-1/4/d^6/c^2/(4*a*c-b^2)^3*((x+1/2*b/c)
^2*c+1/4*(4*a*c-b^2)/c)^(1/2)*b^3*a+1/32/d^6/c^3/(4*a*c-b^2)^3*((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2)*b^5+1
/d^6/c^(1/2)/(4*a*c-b^2)^3*ln((x+1/2*b/c)*c^(1/2)+((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2))*a^3-3/4/d^6/c^(3/
2)/(4*a*c-b^2)^3*ln((x+1/2*b/c)*c^(1/2)+((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2))*b^2*a^2+3/16/d^6/c^(5/2)/(4
*a*c-b^2)^3*ln((x+1/2*b/c)*c^(1/2)+((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2))*b^4*a-1/64/d^6/c^(7/2)/(4*a*c-b^
2)^3*ln((x+1/2*b/c)*c^(1/2)+((x+1/2*b/c)^2*c+1/4*(4*a*c-b^2)/c)^(1/2))*b^6

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^6,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 30.0327, size = 1237, normalized size = 8.9 \begin{align*} \left [\frac{15 \,{\left (32 \, c^{5} x^{5} + 80 \, b c^{4} x^{4} + 80 \, b^{2} c^{3} x^{3} + 40 \, b^{3} c^{2} x^{2} + 10 \, b^{4} c x + b^{5}\right )} \sqrt{c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} - 4 \, \sqrt{c x^{2} + b x + a}{\left (2 \, c x + b\right )} \sqrt{c} - 4 \, a c\right ) - 4 \,{\left (368 \, c^{5} x^{4} + 736 \, b c^{4} x^{3} + 15 \, b^{4} c + 20 \, a b^{2} c^{2} + 48 \, a^{2} c^{3} + 4 \,{\left (127 \, b^{2} c^{3} + 44 \, a c^{4}\right )} x^{2} + 4 \,{\left (35 \, b^{3} c^{2} + 44 \, a b c^{3}\right )} x\right )} \sqrt{c x^{2} + b x + a}}{1920 \,{\left (32 \, c^{9} d^{6} x^{5} + 80 \, b c^{8} d^{6} x^{4} + 80 \, b^{2} c^{7} d^{6} x^{3} + 40 \, b^{3} c^{6} d^{6} x^{2} + 10 \, b^{4} c^{5} d^{6} x + b^{5} c^{4} d^{6}\right )}}, -\frac{15 \,{\left (32 \, c^{5} x^{5} + 80 \, b c^{4} x^{4} + 80 \, b^{2} c^{3} x^{3} + 40 \, b^{3} c^{2} x^{2} + 10 \, b^{4} c x + b^{5}\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{2} + b x + a}{\left (2 \, c x + b\right )} \sqrt{-c}}{2 \,{\left (c^{2} x^{2} + b c x + a c\right )}}\right ) + 2 \,{\left (368 \, c^{5} x^{4} + 736 \, b c^{4} x^{3} + 15 \, b^{4} c + 20 \, a b^{2} c^{2} + 48 \, a^{2} c^{3} + 4 \,{\left (127 \, b^{2} c^{3} + 44 \, a c^{4}\right )} x^{2} + 4 \,{\left (35 \, b^{3} c^{2} + 44 \, a b c^{3}\right )} x\right )} \sqrt{c x^{2} + b x + a}}{960 \,{\left (32 \, c^{9} d^{6} x^{5} + 80 \, b c^{8} d^{6} x^{4} + 80 \, b^{2} c^{7} d^{6} x^{3} + 40 \, b^{3} c^{6} d^{6} x^{2} + 10 \, b^{4} c^{5} d^{6} x + b^{5} c^{4} d^{6}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^6,x, algorithm="fricas")

[Out]

[1/1920*(15*(32*c^5*x^5 + 80*b*c^4*x^4 + 80*b^2*c^3*x^3 + 40*b^3*c^2*x^2 + 10*b^4*c*x + b^5)*sqrt(c)*log(-8*c^
2*x^2 - 8*b*c*x - b^2 - 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) - 4*(368*c^5*x^4 + 736*b*c^4*x^3
+ 15*b^4*c + 20*a*b^2*c^2 + 48*a^2*c^3 + 4*(127*b^2*c^3 + 44*a*c^4)*x^2 + 4*(35*b^3*c^2 + 44*a*b*c^3)*x)*sqrt(
c*x^2 + b*x + a))/(32*c^9*d^6*x^5 + 80*b*c^8*d^6*x^4 + 80*b^2*c^7*d^6*x^3 + 40*b^3*c^6*d^6*x^2 + 10*b^4*c^5*d^
6*x + b^5*c^4*d^6), -1/960*(15*(32*c^5*x^5 + 80*b*c^4*x^4 + 80*b^2*c^3*x^3 + 40*b^3*c^2*x^2 + 10*b^4*c*x + b^5
)*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) + 2*(368*c^5*x^4 + 7
36*b*c^4*x^3 + 15*b^4*c + 20*a*b^2*c^2 + 48*a^2*c^3 + 4*(127*b^2*c^3 + 44*a*c^4)*x^2 + 4*(35*b^3*c^2 + 44*a*b*
c^3)*x)*sqrt(c*x^2 + b*x + a))/(32*c^9*d^6*x^5 + 80*b*c^8*d^6*x^4 + 80*b^2*c^7*d^6*x^3 + 40*b^3*c^6*d^6*x^2 +
10*b^4*c^5*d^6*x + b^5*c^4*d^6)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(5/2)/(2*c*d*x+b*d)**6,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(5/2)/(2*c*d*x+b*d)^6,x, algorithm="giac")

[Out]

Exception raised: TypeError